

MTC35-F22 Temperature Differential Controller Instruction Manual

深圳市亚特克电子有限公司 Shenzhen ALTEC Electronics Co., LTD.

1. Introduction

The MTC35-F22 Temperature Differential Controller is a particularly flexible controller, which allows On/Off control of the temperature difference.

The controller has two temperature sensors as input and two outputs which are controlled by a MCU according to value programmed for the parameters in Parameter List.

Temperature sensor: NTC, range: -50~150 °C.

To get the best performance, before installing and using it, read this instruction manual carefully.

2. Coding

MTC35-F22-2T-2R-220V 1 2 3 4

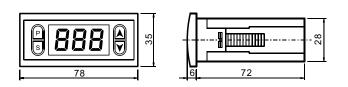
O Software Function
F22 Temperature differential controller

2 Input

2T 2 temperature sensors

4. Front Panel Layout

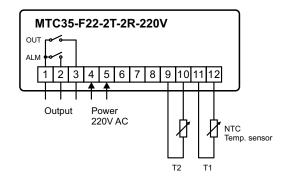
s


Indicates PV, Parameters and Values

) Οι	Output		
2R	2 Relays		

④ Power Supply220V 220V AC

3. Dimensions and Mounting


- 1) Prepare a rectangular cut-out in the mounting panel to the size 72×30 mm.
- 2) Insert the controller from the front panel cut-out.
- 3) From behind of the panel, slide the mounting brackets into the guides on the side of the housing. The flat faces of the mounting brackets must lie against the housing.
- 4) Push the mounting brackets up to the back of the panel, and tighten them evenly.

Note:

Please completes waterproof processing properly, in order to avoid seeps causes the instrument damage.

5. Electrical Connection

6. Operation

1. Up Key

3. Dispaly

2. Down Key

(4). Setting Key(S)

5. Parameter Key(P)

6.1 Viewing the PV

Mounting and wire up the controller and switch on, 3 seconds later, the measured temperature will appear on display. Channel 1 temperature T1 and channel 2 temperature T2 displaying can be exchange by pressing S key. When the 'PV2 displaying indicator' is lit, the display indicates T2.

(3)

6. Main output indicator(RL1)

Alarm output indicator(ALM)

lit when PV2 value is displaying

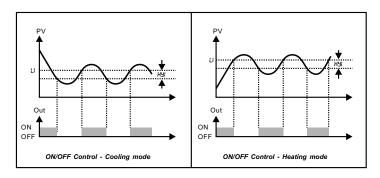
lit when OUT is 'ON'

lit when OUT2 is 'ON' 8. PV2 displaying indicator(PV2)

6.2 Setpoint Adjusting

During the basic functioning, press key 'P' and hold for 1 second, temperature differential setpoint *L* appears on the display. Press key 'S', the value of *L* appears; press keys \blacktriangle or \blacktriangledown to increase or decrease setpoint. Keeping it pressed results in a progressively faster variation. Press key 'P' again, next parameter *H*^g appears, setting its value in the same way.

Use the same method, alarm value L2 and it's hysteresis H32 can be set.


6.3 Output Action

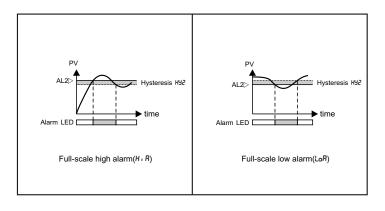
REl = dr r, OUT1 as cooling control output;

Rt = rEu, OUT1 as heating control output;

While the controller was configured for cooling applications, to avoid compressor switch off and on frequently, must set the minimum off time *r*b between the switch OFF and switch ON, regardless of the input value.

The control algorithm is ON/OFF, temperature differential setpoint is \mathcal{U} , hysteresis is $\mathcal{H}_{\mathcal{H}}$.

6.4 Parameter List


Switch off the controller; press keys \blacktriangle and \checkmark at the same time and hold on, then switch the controller on again. Parameter *SPH* appears on display. Parameter selection and the display of the value is obtained by pressing key P repeatedly; change with keys \blacktriangle and \checkmark and store with S.

SN	Mnemonic	Parameter	Adjustable Range	Parameter Description
1	LI	Temp. differential setpoint	5PH~5PL	
2	HY I	Hysteresis 1	1~10 °C	Operation parameter
3	RL2	Alarm value	5PH~5PL	Operation parameter
4	HY2	Alarm hysteresis	1~10 °C	
5	SPH	Setpoint high limit	-50°C~150°C	limit the adjustable range of U
6	SPL	Setpoint low limit	-50°C~150°C	and RL2
7	rti	OUT relay min. off time	0~10 minutes	Compressor protection
8	PFi	Temperature sensor failure output	on DFF	OUT 'ON' while sensor failure OUT 'OFF' while sensor failure
9	Rdi	Temp. sensor 1 adjustment	-5~5°C	
10	REI	Output action	לי ר רבה	Direct(cool) Reverse(heat)
11	8d2	Temp. sensor 2 adjustment	-5~5°C	
12	2RL	Alarm object	년 년2 dt	Channel 1 measured temp. T1 Channel 2 measured temp. T2 Temperature difference
13	RLo	Alarm mode	OFF H. R LoR	Turn alarm off Full-scale high alarm Full-scale low alarm

6.5 Alarms

Two different types of alarm can be configured with R_{Lo} : H, R and L_0R as the right table shows. The alarm hysteresis is H_2R .

Hysteresis is used to provide a definite indication of the alarm condition and to prevent alarm relay chatter.

6.6 Sensor Failure

Technical Data

While temperature sensor connection breakdown ${\it \omega} r$ is displayed, or while overrange 5nb is displayed.

At this time, when the temperature sensor T1 fails, relay output(OUT) is determined by *PFI* as shown in the parameter list.

Measurement range	-50~150 °C		
Resolution	1 °C		
Sample rate	125ms		
Temperature sensor	NTC, PVC Wire, 2.0m		
Relay contact rating	5(8)A/250VAC		
Control algorithm	trol algorithm ON/OFF		
Power supply	wer supply 220V AC, ≤2.0W		
Dimensions	W78×H35×D78mm		
Environmental	Temp: -20~55 °C, Rel. Humidity: ≤85%		